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1 Introduction

Vythos, is a web-application (https://vythos.jaqpot.org/) developed using R and shiny package, that
hosts four predictive models for the estimation of toxicity indeces. Interested users can upload a set of engineered
nanomaterials (ENMs) with known properties and unknown toxicity and acquire reliable predictions. Vythos
incorporates the concepts of grouping, read-across [1] and optimization through the solution of a Mixed Integer
Linear Programming (MILP) problem. More information can be found in the relevant publication (add link).
Vythos is based in a novel grouping methodology for the prediction of toxicity related endpoints of ENMs. Based
on the formulation and the solution of a mathematical optimization problem, the method searches over a space
of alternative grouping hypotheses [1], in terms of partition feature (group defining feature), breakpoints (group
limits) and selected features in each region, and determines the one providing the most accurate read-across
predictions[2]. The two available models are based on two different datasets derived from Literature: the Gold
ENMs dataset from Walkey et al. [3] and the MeOx ENMs dataset from Gajewicz et al. [5]
The Gold ENMs dataset consists of 84 culture medium incubated gold anionic and cationic nanoparticles (diameters
of 15, 30 and 60 nm). For each ENM there are available 40 physicochemical descriptors, 129 protein corona
fingerprints (biological descriptors) and additional measurements of its cell association with human A549 cells (in
mL/�g(Mg)). The cell association was transformed into log2 values. The protein corona fingerprints were filtered
by GSVA analysis and only 63 were considered as statistically significant proteins. [4] Following the proposed
workflow for validation purposes, the above set was split into training and test sets in a ratio of 66:33 using the
Kennard-Stones method. [6]
The second dataset in which the MILP workflow is applied, is derived from the publication of Gajewicz et al. (2014)
[5] (MeOx ENMs). This dataset contains a list of 18 nano-metal oxide ENMs with their toxicity index which refer
to the concentration [molar] of metal oxide ENMs that caused a 50% reduction of the cells of human keratinocyte
(HaCaT) cell line after 24 hours of exposure (𝐿𝐶50). For these ENMs, there are available 18 quantum-mechanical
descriptors from quantum-chemical calculations and 11 image descriptors (derived from Transmission Electron
Microscopy images). The endpoints were transformed into log (𝐿𝐶50)−1. For comparison purposes, training and
test sets in this case study were the same as in the original publication.
The proposed method is demonstrated on data derived from the publication of Xia et al.[7] (CNTs). In this
publication the surface adsorption energy of ENMs was studied through five nanodescriptors that represent the
surface adsorption interactions (hydrophobicity, hydrogen bond -donors and recipients-, polarity/polarizability, and
lone-pair electrons). These surface adsorpiton forces are responsible for the interaction of ENMs with various
biological molecules, including proteins thus, they can contribute to the interpretation of the ENMs behavior in
different biological media.
Under ideal biological conditions, the surface adsorption properties of ENMs can be measured using a set of
probes with various physicochemical properties. Therefore in this study, 28 probe compounds were used in order
to measure the adsorption coefficient (𝑘) on a given ENM (in this case on 40 nm diameter Multiwalled Carbon
Nanotubes (MWCNTs) coated with hydroxyl derivatives - MWCNT40nm-COOH). The 𝑘 values were converted
to logarithmic scale. For external validation purposes, the dataset was partitioned into training and test sets in a
ratio of 75:25 using the Kennard-Stone method.

2 Validation

An external validation approach is used to test the proposed read-across methodology, by dividing the full dataset
into training and test subsets. This data partitioning can be achieved either by applying a random partition or a
partition method (e.g Kennard-Stones).[8] The training set is used in the developed MILP workflow and determines
the optimal set of descriptors and group limits. For the test set, predictions are made using the optimized read-
across hypothesis. Eventually, the read-across predictions are compared with the experimental endpoint values
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using the 𝑞2
𝑒𝑥𝑡 statistic (Eq. 1).[9]

𝑞2
𝑒𝑥𝑡 = 1 − ∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)
∑𝑛

𝑖=1 (𝑦𝑖 − ̄𝑦𝑡𝑟)2 (1)

where 𝑦𝑖 and ̂𝑦𝑖 are the experimental and predicted endpoint values over the test set and ̄𝑦𝑡𝑟 is the averaged value
of the endpoint for the training set.

3 Domain of applicability

In this methodology, where multiple linear equations constitute the read-across model, we consider a prediction as
reliable only if all the independent descriptors are within the ranges defined by the training samples. Therefore,
before using the model for predicting the endpoint of an external ENM, the input variables should be scaled
first according to the original dataset’s min-max values. Only if all scaled values are within the range [0,1], the
read-across prediction can be accepted.

4 Gold ENMs model

4.1 1D model

The selected optimal model for the 𝑛𝑒𝑡.𝑐𝑒𝑙𝑙 (log2 (𝑛.𝑐𝑒𝑙𝑙𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛)) estimation for gold ENMs, classifies the
ENMs into regions A or B according to eq. 2 add paper reference. This model is derived from the solution of a 1D
MILP problem thus, one partition features is selected; the Apolipoprotein B-100 (𝑃04114), which is a biological
descriptor. Thirty-nine descriptors are needed for toxicity predictions derived during training, presented in Table
1.

𝑛𝑒𝑡.𝑐𝑒𝑙𝑙 =

⎧{{{{{{{{{{{{
⎨{{{{{{{{{{{{⎩

0.625 ⋅ 𝑙𝑠𝑝𝑟𝑖.𝑠𝑒𝑟𝑢𝑚 + 0.523 ⋅ 𝑙𝑠𝑝𝑟𝑖.𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 + 0.333 ⋅ 𝑧𝑎𝑣.𝑠𝑒𝑟𝑢𝑚
+2.443 ⋅ 𝑖𝑛𝑡.𝑠𝑒𝑟𝑢𝑚 + 0.716 ⋅ ℎ𝑑𝑟𝑒𝑙.𝑠𝑒𝑟𝑢𝑚 − 0.337 ⋅ 𝑣𝑜𝑙.𝑐ℎ
+0.505 ⋅ 𝑝𝑑𝑖.𝑟𝑒𝑙 − 2.607 ⋅ 𝑧𝑝.𝑟𝑒𝑙 + 1.610 ⋅ 𝑧𝑝.𝑠𝑦𝑛𝑡.𝑠𝑖𝑔𝑛
−0.793 ⋅ 𝑧𝑝.𝑠𝑒𝑟𝑢𝑚.𝑚𝑎𝑔 − 1.131 ⋅ 𝐴𝑆.𝑡𝑜𝑡𝑎𝑙 − 0.508 ⋅ 𝑃01024
+0.151 ⋅ 𝑃00734 − 0.009 ⋅ 𝑃05154 + 1.577 ⋅ 𝑃19823 + 0.358 ⋅ 𝑃12259
+0.384 ⋅ 𝑃10720 − 0.041 ⋅ 𝑃68871 + 0.756 ⋅ 𝑂43866 + 2.653 ⋅ 𝑃02654
−0.718 ⋅ 𝑃03952 + 0.063 ⋅ 𝑃18428 − 0.177 ⋅ 𝑃02655 − 0.356 ⋅ 𝑃00751
−0.158 ⋅ 𝑃02790 + 0.251 ⋅ 𝑃18065 + 0.588 ⋅ 𝑃08567 + 0.172 ⋅ 𝑃01019
+0.576 ⋅ 𝑃02671 + 0.444 ⋅ 𝑃00451 + 0.095 ⋅ 𝑃14618 − 0.373 ⋅ 𝑃23528
+0.467 ⋅ 𝑄99467 − 4.814 if 𝑃04114 ≤ 0.447 region A

−2.600 ⋅ 𝑝𝑑𝑖.𝑠𝑒𝑟𝑢𝑚 − 0.820 ⋅ 𝑖𝑛𝑡.𝑟𝑒𝑙 + 0.052 ⋅ 𝑧𝑝.𝑠𝑦𝑛𝑡ℎ.𝑚𝑎𝑔
+2.338 ⋅ 𝑃01009 + 0.934 ⋅ 𝑃02749 − 3.186 ⋅ 𝑃02655 + 4.722 ⋅ 𝑃27169
+0.746 ⋅ 𝑃01019 − 5.327 if 𝑃04114 > 0.447 region B

(2)

For more information about these descriptors please refer to the original publication and its supplementary material
[3].
The training Gold ENMs that belong to regions A and B are presented in Table 2. For each unknown ENM
belonging to region A or B, the training ENMs of that region are its neighbors.
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Table 1: Semantics of Gold ENMs models.

Descriptor Description
𝑛𝑒𝑡.𝑐𝑒𝑙𝑙 The log2-transformed value of cell association
𝑐𝑙𝑎𝑠𝑠 Surface classification: ”anionic” (1) or ”cationic” (0)
𝑙𝑠𝑝𝑟𝑖.𝑠𝑒𝑟𝑢𝑚 Localized surface plasmon resonance (LSPR) index after serum exposure
𝑙𝑠𝑝𝑟𝑖.𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 (LSPR index after serum exposure)/(LSPR index after synthesis)
𝑧𝑎𝑣.𝑠𝑒𝑟𝑢𝑚 z-average hydrodynamic diameter (HD) after serum exposure
𝑝𝑑𝑖.𝑠𝑒𝑟𝑢𝑚 Polydispersity index after serum exposure
𝑖𝑛𝑡.𝑠𝑒𝑟𝑢𝑚 Intensity mean HD after serum exposure
ℎ𝑑𝑟𝑒𝑙.𝑠𝑒𝑟𝑢𝑚 (Z-average HD after serum exposure)/(TEM size)
𝑣𝑜𝑙.𝑐ℎ (Volume mean HD after serum exposure) - (Volume mean HD after synthesis)
𝑝𝑑𝑖.𝑟𝑒𝑙 (Polydispersity index after serum exposure)/(Polydispersity index after synthesis)
𝑖𝑛𝑡.𝑟𝑒𝑙 (Intensity mean HD after serum exposure) - (Intensity mean HD after synthesis)
𝑧𝑝.𝑟𝑒𝑙 (zeta potential after serum exposure)/(zeta potential after synthesis)
𝑧𝑝.𝑠𝑦𝑛𝑡ℎ.𝑠𝑖𝑔𝑛 Sign (signum) of zeta potential after synthesis
𝑧𝑝.𝑠𝑦𝑛𝑡ℎ.𝑚𝑎𝑔 Magnitude of zeta potential after synthesis
𝑧𝑝.𝑠𝑒𝑟𝑢𝑚.𝑚𝑎𝑔 Magnitude of zeta potential after serum exposure
𝐴𝑆.𝑡𝑜𝑡𝑎𝑙 Total surface area
𝑃04114 Apolipoprotein B-100
𝑃01024 Complement C3
𝑃01009 Alpha-1-antitrypsin
𝑃00734 Prothrombin
𝑃05154 Plasma serine protease inhibitor
𝑃19823 Inter-alpha-trypsin inhibitor heavy chain H2
𝑃12259 Coagulation factor V
𝑃10720 Platelet factor 4 variant
𝑃68871 Hemoglobin subunit beta
𝑂43866 CD5 antigen-like
𝑃02749 Beta-2-glycoprotein 1
𝑃02654 Apolipoprotein C-I
𝑃03952 Plasma kallikrein
𝑃00742 Coagulation factor X
𝑃09871 Complement C1s subcomponent
𝑃20851 C4b-binding protein beta chain
𝑃18428 Lipopolysaccharide-binding protein
𝑃02655 Apolipoprotein C-II
𝑃00751 Complement factor B
𝑃02790 Hemopexin
𝑃27169 Serum paraoxonase/arylesterase 1
𝑃18065 Insulin-like growth factor-binding protein 2
𝑃08567 Pleckstrin
𝑃01019 Angiotensinogen
𝑃02671 Fibrinogen alpha chain
𝑃00451 Coagulation factor VIII
𝑃14618 Pyruvate kinase isozymes M1/M2
𝑃23528 Cofilin-1
𝑄99467 CD180 antigen
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Table 2: Training samples groups, when using the 1D Gold ENMs model.

Training Gold ENMs
Region A G15.AC, G15.AHT, G15.CALNN, G15.CTAB,

G15.DDT@DOTAP, G15.DTNB, G15.F127, G15.Gly-
SH, G15.MES, G15.Met-SH, G15.MHDA, G15.MSA,
G15.MUTA, G15.NT@PSMA-EDA, G15.NT@PSMA-Urea,
G15.ODA, G15.T20, G15.SA, G15.PAH-SH, G15.PLL-
SH, G15.PVA, G15.PVP, G15.SPP, G15.TP, G30.AC,
G30.CFGAILS, G30.DDT@DOTAP, G30.LA, G30.MAA,
G30.MUA, G30.MUTA, G30.PAH-SH, G30.Thr-SH, G30.TP,
G60.AUT, G60.CIT, G60.CTAB, G60.CIT, G60.CVVIT,
G60.DDT@DOTAP, G60.DTNB, G60.MBA, G60.MUTA,
G60.ODA, G60.PVA, G60.Trp-SH

Region B G15.DDT@BDHDA, G15.DDT@CTAB, G15.DDT@ODA,
G15.DDT@SA, G15.DDT@SDS, G15.HDA, G15.NT@DCA,
G30.DDT@BDHDA, G30.DDT@CTAB, G60.DDT@BDHDA

4.2 2D model

The full MILP model produced in 2D for the Gold ENMs’ case study is presented next (Eq. 3). The partition
feature selected from the physicochemical descriptors is the difference between the Intensity mean hydrodynamic
diameter (HD) after serum exposure and the Intensity mean HD after synthesis (𝑖𝑛𝑡.𝑟𝑒𝑙) while Apolipoprotein B-10
(𝑃04114) is selected from the biological descriptors. The MILP model uses 7 physicochemical and 7 biological
descriptors (see Table 1), and classifies incoming samples in four regions A, B, C and D.

𝑛𝑒𝑡.𝑐𝑒𝑙𝑙 =

⎧{{{{{{{{{{{
⎨{{{{{{{{{{{⎩

−0.415 ⋅ 𝑐𝑙𝑎𝑠𝑠 + 0.113 ⋅ 𝑙𝑠𝑝𝑟𝑖.𝑠𝑒𝑟𝑢𝑚
+0.094 ⋅ 𝑧𝑎𝑣.𝑠𝑒𝑟𝑢𝑚 + 2.178 ⋅ 𝑖𝑛𝑡.𝑠𝑒𝑟𝑢𝑚
+0.269 ⋅ 𝑝𝑑𝑖.𝑟𝑒𝑙 + 2.654 ⋅ 𝑧𝑝.𝑠𝑦𝑛𝑡ℎ.𝑠𝑖𝑔𝑛
−0.426 ⋅ 𝐴𝑆.𝑡𝑜𝑡𝑎𝑙 − 0.140 ⋅ 𝑃05154 + 1.648 ⋅ 𝑃19823
−0.364 ⋅ 𝑃03952 + 0.464 ⋅ 𝑃00742 + 0.268 ⋅ 𝑃09871
+0.664 ⋅ 𝑃20851 − 0.441 ⋅ 𝑃23528
−5.627 if 𝑖𝑛𝑡.𝑟𝑒𝑙 ≤ 0.742 & 𝑃04114 ≤ 0.447 region A

−0.682 ⋅ 𝑐𝑙𝑎𝑠𝑠 − 6.122 if 𝑖𝑛𝑡.𝑟𝑒𝑙 ≤ 0.742 & 𝑃04114 > 0.447 region B

0.113 if 𝑖𝑛𝑡.𝑟𝑒𝑙 > 0.742 & 𝑃04114 ≤ 0.447 region C

−7.590 if 𝑖𝑛𝑡.𝑟𝑒𝑙 > 0.742 & 𝑃04114 > 0.447 region D

(3)

The training Gold ENMs that belong to regions A, B, C and D are presented in Table 3. For each unknown ENM
belonging to region A, B, C or D the training ENMs of that region are its neighbors.

5 MeOx ENMs model

5.1 1D model

The full 1D model for the log (𝐿𝐶50)−1 estimation of metal oxide ENMs, classifies the ENMs into regions A, B
and C and it is presented next in Eq. 4. Seven descriptors are needed for toxicity predictions (see Table 4) derived
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Table 3: Training samples groups, when using the 2D Gold ENMs model.

Training Gold ENMs
Region A G15.TP, G15.Met-SH, G15.DTNB, G15.DDT@DOTAP,

G15.CTAB, G15.AC, G15.AHT, G15.CALNN, G15.F127,
G15.Gly-SH, G15.MES, G15.MHDA, G15.MSA,
G15.NT@PSMA-EDA, G15.NT@PSMA-Urea, G15.ODA,
G15.PAH-SH, G15.PLL-SH, G15.PVA, G15.PVP,
G15.SA, G15.SPP, G15.T20, G30.AC, G30.CFGAILS,
G30.DDT@DOTAP, G30.LA, G30.MAA, G30.MUA,
G30.MUTA, G30.PAH-SH, G30.Thr-SH, G30.TP, G60.AUT,
G60.CIT, G60.CTAB, G60.CVVIT, G60.DDT@DOTAP,
G60.DTNB, G60.MBA, G60.MUTA, G60.ODA, G60.Trp-SH,
G60.PVA

Region B G15.HDA, G15.DDT@ODA, G15.DDT@SA, G15.NT@DCA,
G30.DDT@BDHDA, G30.DDT@CTAB, G60.DDT@BDHDA

Region C G15.DDT@BDHDA, G15.DDT@CTAB, G15.DDT@SDS
Region D G15.MUTA

during training, 4 quantum-mechanical and 3 image descriptors. The partition feature is the electrochemical
potential (𝜇). For more information about these descriptors please refer to the original publication ([5]).

log (𝐿𝐶50)−1 =

⎧{{{{{
⎨{{{{{⎩

3.320 if 𝜇 < 0.075 region A

−0.096 ⋅ 𝐶𝑜𝑟𝑒 + 2.926 if 0.075 ≤ 𝜇 ≤ 0.537 region B

0.723 ⋅ Δ𝐻𝑐
𝑓 − 0.330 ⋅ 𝑇 𝐸 − 0.044 ⋅ 𝑆

+0.006 ⋅ 𝑑𝑉 /𝑚 + 0.237 ⋅ 𝑑𝑆𝑎𝑢𝑡𝑒𝑟

+0.055 ⋅ 𝑃𝑌 + 1.829 if 0.537 < 𝜇 region C

(4)

Table 4: Semantics of the 1D MeOx ENMs model.

Descriptor Description
log 𝐿𝐶−1

50 The log-transformed concentration of ENMs that causes a 50% reduction of cells
after 24 hrs of exposure

𝜇 The electrochemical potential
𝜒𝑐 The Mulliken’s electronegativity
𝐶𝑜𝑟𝑒 The core–core repulsion energy
Δ𝐻𝑐

𝑓 The standard enthalpy of formation of metal oxide nanocluster
𝑇 𝐸 The total energy
𝑆 The total softness
𝐿𝑈𝑀𝑂 The energy of the lowest unoccupied molecular orbital
𝑆ℎ𝑖𝑓𝑡 The Schuurmann MO shift alpha
𝐴𝑅𝑋

The aspect ratio X
𝑑𝑉 /𝑚 The volume/mass diameter
𝑑𝑆𝑎𝑢𝑡𝑒𝑟 The volume/surface diameter
𝑃𝑌 The porosity Y

The training MeOx ENMs that belong to regions A, B and C are presented in Table 5. For each unknown ENM
belonging to region A, B or C the training ENMs of that region are its neighbors.
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Table 5: Training samples groups, when using the 1D MeOx ENMs model.

Training MeOx ENMs
Region A ZnO
Region B In2O3, CoO
Region C Bl2O3, ZrO2, Mn2O3, Sb2O3, SiO2, TiO2, V2O3

Table 6: Training samples groups, when using the 2D MeOx ENMs model.

Training MeOx ENMs
Region A Sb2O3
Region B Bl2O3, CoO, In2O3, Mn2O3, SiO2, TiO2, V2O3, ZrO2
Region C -
Region D ZnO

5.2 2D model

The selected optimal 2D model for the log (𝐿𝐶50)−1 estimation of metal oxide ENMs, classifies the ENMs into
regions A, B, C and D according to eq. 5 add paper reference. This model is derived from the solution of a 2D
MILP problem, thus two partition features are selected; the Mulliken’s electronegativity (𝜒𝑐), which is a quantum-
mechanical descriptor and the aspect ratio X (𝐴𝑅𝑋

) which is an image descriptor. Seven descriptors are needed
for toxicity predictions derived during training 4 quantum-mechanical and 3 image descriptors (see Table 4). For
more information about these descriptors please refer to the original publication [5].

log (𝐿𝐶50)−1 =

⎧{{{{{{{{
⎨{{{{{{{{⎩

2.310 if 𝜒𝑐 ≤ 0.875 & 𝐴𝑅𝑋
≤ 0.361 region A

0.958 ⋅ Δ𝐻𝑐
𝑓 − 0.585 ⋅ 𝐿𝑈𝑀𝑂

+0.158 ⋅ 𝑆 − 0.647 ⋅ 𝑆ℎ𝑖𝑓𝑡
−0.099 ⋅ 𝑑𝑉 /𝑚 − 0.034 ⋅ 𝑑𝑆𝑎𝑢𝑡𝑒𝑟
−0.158 ⋅ 𝑃𝑌 + 2.564 if 𝜒𝑐 ≤ 0.875 & 𝐴𝑅𝑋

> 0.361 region B

𝑁𝐴 if 𝜒𝑐 > 0.875 & 𝐴𝑅𝑋
≤ 0.361 region C

3.320 if 𝜒𝑐 > 0.875 & 𝐴𝑅𝑋
> 0.361 region D

(5)

The training MeOx ENMs that belong to regions A, B and D are presented in Table 6. For each unknown ENM
belonging to region A, B or D the training ENMs of that region are its neighbors. Considering that no training
ENMs have been allocated in region C, no predictions can be made if an unknown ENM belongs to this region.

6 CNTs model

The full 1D model for the log 𝑘 estimation of CNTs, classifies the samples into regions A and B and it is presented
next in Eq. 6. Four descriptors are needed for toxicity predictions (see Table 7) derived during training. The
partition feature is the hydrogen bond acidity (𝛼). For more information about these descriptors please refer to
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the original publication ([7]).

log 𝑘 =
⎧{
⎨{⎩

1.841 ⋅ 𝜋 − 0.016 ⋅ 𝛼 − 2.463 ⋅ 𝛽 + 3.106 ⋅ 𝑉 + 2.431 if 𝛼 ≤ 0.907 region A

4.260 if 𝛼 > 0.907 region B
(6)

Table 7: Variables involved in the 1D CNTs model.

Role Symbol Description[7]
Endpoint log 𝑘 The adsorption coefficients of the probe compounds on

MWCNT40nm-COOH
Partition feature 𝛼 Hydrogen-bond acidity
MLR variables 𝜋 Polarizability

𝛼 Hydrogen-bond acidity
𝛽 Hydrogen-bond basicity
𝑉 Lipophilicity interaction

The training probe compounds that belong to regions A and B are presented in Table 8. For each unknown ENM
belonging to region A or B the training ENMs of that region are its neighbors.

Table 8: Training samples groups, when using the 1D CNTs model.

Training probe compounds
Region A 4-chloroanisole, phenethyl alcohol, 1-methylnaphthalene, benzyl al-

cohol, phenol, benzonitrile, 3-methylphenol, chlorobenzene, p-xylene,
bromobenzene, acetophenone, 3,5-dimethylphenol, methyl benzoate,
iodobenzene, propylbenzene, 4-chlorotoluene, ethyl benzoate, 4-
nitrotoluene, 4-chloroacetophenone, naphthalene

Region B 3-bromophenol

7 Instructions

To initiate the prediction process users must select one of the provided datasets from the Select dataset drop-
down menu: Metal oxides ENMs toxicity that corresponds to the MeOx ENMs set or Gold ENMs toxicity
that corresponds to the Gold ENMs set. The users must also select the type of model they want to use; the 1D
or 2D MILP model from the corresponding radiobuttons. When a model is selected the necessary variables are
presented, as well as the endpoint that will be predicted, and the 𝑞2

𝑒𝑥𝑡 statistic from external validation (Fig. 1).
Users must upload one .csv file containing the dataset of interest by clicking on the Browse button in the Select
file field. The file must contain the values of the necessary descriptors (in columns), including the the ENMs
names in the 1rst column. Missing values cannot be handled by this approach. Users are advised to download and
fill the template input file different for each model that can be downloaded from the app by clicking on Template
button.
Input data are automatically normalized, according to Eq. 7.

𝑐sc = 𝑐in − 𝑚𝑖𝑛
𝑚𝑎𝑥 − 𝑚𝑖𝑛 (7)

where 𝑐in, is the value of the parameter before normalization, 𝑚𝑖𝑛, is the minimum value of the parameter in the
training set, 𝑚𝑎𝑥,is the maximum value of the parameter in the training set and 𝑐sc, is the normalized value of
the parameter.
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Figure 1: The user interface of Vythos application.

If a dataset is uploaded, by pressing the Predict button, the prediction process starts, according to the regions
where each input sample belongs, otherwise the corresponding button remains disabled till the necessary file is
provided.
The analysis produces a table that contains the predicted value of toxicity index for all the provided ENMs and
can be downloaded in .csv format by clicking on Results button. The table contains also an indication of the
reliability of the predictions and the group where each ENM belongs. A graph where the input ENMs are depicted
in accordance to the training ENMs is also presented. The ”space” is defined by the breakpoints and the toxicity
index thus, it can be a 2D graph in the case of one breakpoint (1D MILP model) model (Fig. 2) or a 3D graph
(2D MILP model) in the case of two breakpoints (Fig. 3). The diagram can be downloaded in .png format.
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Figure 2: The produced results running 1D-MeOx ENMs set. The predictions for 𝑙𝑜𝑔(𝐿𝐶50)−1 are presented along with the 2D
regions plot.

Figure 3: The produced results running 2D-Gold ENMs set. The predictions for 𝑛𝑒𝑡.𝑐𝑒𝑙𝑙 are presented along with the 3D regions
plot.
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8 Abbreviations

• ENM, engineered nanomaterial
• MILP, mixed integer linear programming
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